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Abstract

In this study, an accurate analytical solution for the nonlinear free vibration of a conservative oscillator with inertia and

static type cubic nonlinearities is derived. This solution has been obtained using homotopy analysis method (HAM). Then,

homotopy Pade technique is applied to accelerate the convergence rate of the series solution. This study shows that the

HAM leads to an accurate analytical solution, which is valid for a wide range of considered system parameters. Unlike the

other analytical methods, HAM can control and adjust the convergence region and rate of the approximation series

solution. The excellent accuracy of the current results is demonstrated by comparing with the available analytical and

numerical results.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many physical phenomena are modeled by nonlinear differential equations. As an example, vibration of
mechanical systems associated with nonlinear properties can be mentioned. Therefore, the study on the
various methods used for solving the nonlinear differential equations is a very important topic for the analysis
of engineering practical problems. There are a number of approaches for solving nonlinear equations, which
range from completely analytical to completely numerical ones. Besides all advantages of using numerical
methods, closed form solutions appear more appealing because they reveal physical insights through the
physics of the problem. Also, parametric studies become more convenient with applying analytical methods.
Moreover, analytical solutions are generally required for the validation of numerical methods and computer
softwares.

Traditional analytical methods, which have been widely used for nonlinear equations include perturbation
methods such as the Lindstedt–Poincare, multiple time scales methods and the generalized averaging method
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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of Krylov–Bogoliubov–Mitropolski [1–3]. The effectiveness of perturbation methods is limited, because these
methods are applicable primarily only when the nonlinear terms in the equation are small relative to the linear
terms. The other available analytical methods, which have been used for solving both weakly and strongly
nonlinear equations, are the harmonic balance [4,5], equivalent linearization [6], describing function [7] and
power series method. These methods have their own limitations and any variation in system parameters can
lead to not only quantitative but also qualitative errors in the predicted response. For example, although the
power series is a powerful method and has been employed with some successes, but since the method requires
the generation of a coefficient for each term in the series, it is relatively tedious and difficult to demonstrate
that the series converges [8,9].

The harmonic balance (HB) [1,10,11] is another method for determining analytical approximations to the periodic
solutions of differential equations. Although this method is valuable and can solve strongly nonlinear vibration
problems, it is usually very difficult to construct higher order of approximations to the solution. This happens
because for higher-order approximations, sets of complicated nonlinear algebraic equations must be solved.

In general, both of the perturbation and non-perturbation methods cannot adjust the convergence region
and rate of the given approximate series [12,13]. In order to overcome the limitations of traditional analytical
methods, homotopy analysis method (HAM) was developed by Liao [12], which has the following advantages
over above-mentioned methods:
1.
 HAM can adjust the convergence region and the rate of approximation series.

2.
 HAM is easy-to-use analytic tool for solving strongly nonlinear differential equations.
The effectiveness and accuracy of the HAM have been demonstrated in the analysis of some nonlinear
problems [14–21]. It is noted that the other powerful analytic techniques for strongly nonlinear problems such
as Adomian’s decomposition method, Lyapunov’s artificial small parameter method, and the d-expansion
method are special cases of the HAM, so that they can be unified in the frame of the HAM [13].

The main objective of present study is to obtain highly accurate analytical solutions for free vibrations of a
conservative oscillator with inertia and static type cubic nonlinearities. The HAM and homotopy Pade
technique are used to find analytical solutions for this problem with the nonlinear governing differential
equation. It is shown that the solution is quickly convergent and its components can be simply calculated.
Also, compared to other analytical methods, it can be observed that the results of HAM and homotopy Pade
technique are accurate and require smaller computational effort. Combination of the HAM and homotopy
Pade technique accelerates the convergence of the results. An excellent accuracy of the HAM results indicates
that this method can be used for problems in which the strong nonlinearities are taken into account.

2. Governing equation of the problem

Many engineering structures can be modeled as a slender, elastic cantilever beam carrying a concentrated
mass at an intermediate point along its span [22,23]. This system can be simulated by a mass with serial linear
and nonlinear stiffnesses on a frictionless contact surface as shown in Fig. 1. For this system, the governing
differential equation of the motion is in the following form [24,25]:

ð1þ 3�zv2Þ
d2v

dt2
þ 6�zv

dv

dt

� �2

þ o2
evþ �o2

ev3 ¼ 0, (1)

vðtÞ ¼ y2ðtÞ � y1ðtÞ, (2)
Fig. 1. Schematic of the problem: a mass with serial linear and nonlinear stiffnesses on a friction less contact surface.
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where

� ¼
b

K2
,

x ¼
K2

K1
,

z ¼
x

1þ x
,

oe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mð1þ xÞ

s
. (3)

Parameters b, K2, K1, v, m and oe are nonlinear spring constant, linear portion of the nonlinear spring
constant, linear spring constant, deflection of nonlinear spring, mass and the natural frequency, respectively
[25]. Subject to the following initial conditions:

vð0Þ ¼ a; _vð0Þ ¼
dv

dt
ð0Þ ¼ 0. (4)

Under the transformation t ¼ ot, where o denotes the frequency of vibration, Eq. (1) takes the following
form:

o2½ð1þ 3�zv2Þ€vþ 6�zv_v2� þ o2
evþ �o2

ev3 ¼ 0, (5)

with the following initial conditions:

vð0Þ ¼ a; _vð0Þ ¼ 0. (6)
3. Homotopy analysis method

3.1. Basic idea

Homotopy analysis is a general analytic method for solving the nonlinear differential equations [12,13]. The
HAM transforms a nonlinear differential equation into an infinite number of linear differential equation with
embedding an auxiliary parameter (q) that typically ranges from zero to one [13]. As q increases from zero to
one, the solution varies from the initial guess to the exact solution. To illustrate the basic ideas of the HAM,
consider a nonlinear differential equation as

N½vðtÞ� ¼ 0, (7)

where N is a general nonlinear differential operator, and v(t) is an unknown function of the parameter t. The
homotopy is constructed as follows:

Hðf; q; _;HðtÞÞ ¼ ð1� qÞL½fðt; qÞ � v0ðtÞ� � q_HðtÞN½fðt; qÞ�, (8)

where f, _ and H(t) are a function of t and q, the nonzero auxiliary parameter and the nonzero auxiliary
function, respectively. The auxiliary parameter and the auxiliary function adjust convergence region of the
solution. The parameter L denotes an auxiliary linear operator. As q increases from zero to one, the f(t, q)
varies from the initial approximation to the exact solution. In other words, f(t, 0) ¼ v0(t) is the solution of the
Hðf; q; _;HðtÞÞjq¼0 ¼ 0, and f(t, 1) ¼ v0(t) is the solution of the Hðf; q; _;HðtÞÞjq¼1 ¼ 0. Enforcing
Hðf; q; _;HðtÞÞ ¼ 0, the zero-order deformation is constructed as:

ð1� qÞL½fðt; qÞ � v0ðtÞ� ¼ q_HðtÞN½fðt; qÞ�, (9)

with the following initial conditions:

fð0; qÞ ¼ a;
dfð0; qÞ

dt
¼ 0. (10)
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The functions f(t, q) and o(q) can be expanded as power series of q using Taylor’s theorem as

fðt; qÞ ¼ fðt; 0Þ þ
X1
m¼1

1

m!

qmfðt; qÞ
qqm

�����
q¼0

qm ¼ v0ðtÞ þ
X1
m¼1

vmðtÞq
m, (11)

oðqÞ ¼ o0 þ
X1
m¼1

1

m!

qmoðqÞ
qqm

����
q¼0

qm ¼ o0 þ
X1
m¼1

omqm, (12)

where vm(t) and om are called the m-order deformation derivatives.
Differentiating zero-order deformation equation with respect to q and then setting q ¼ 0, yields the first-

order deformation equation (m ¼ 1) which gives the first-order approximation of the v(t) as follows:

L½v1ðtÞ� ¼ _HðtÞN½v0ðtÞ;o0�
��
q¼0

, (13)

with the following initial conditions:

v1ð0Þ ¼ 0; v1ð0Þ ¼ 0. (14)

The higher order approximations of the solution can be obtained by calculating the m-order (m41)
deformation equation. The m-order deformation equation can be calculated by differentiating Eqs. (13) and
(14) m times with respect to q as follows [14,15]:

L½vmðtÞ � vm�1ðtÞ� ¼ _HðtÞRmð~vm�1; ~om�1Þ, (15)

where the ~vm�1, ~om�1 and Rmð~vm�1; ~om�1Þ are defined as follows:

Rmð~vm�1; ~om�1Þ ¼
1

ðm� 1Þ!

dm�1N½fðt; qÞ;oðqÞ�
dqm�1

����
q¼0

, (16)

~vm�1 ¼ fv0; v1; v2; . . . ; vm�1g, (17)

~om�1 ¼ fo0;o1;o2; . . . ;om�1g, (18)

subject to the following initial conditions:

vmð0Þ ¼ _vmð0Þ ¼ 0. (19)
3.2. Homotopy Pade technique

Pade approximant is the best approximation of a function by a rational function of a given order [26,27].
A Pade approximant often gives better approximation of a function than those of Taylor series. Also, Pade
approximation may work in cases where the Taylor series does not converge. In order to calculate a Pade
approximant of type [m, n], let f be a function expanded in the form of power series as follows:

f ðzÞ ¼
Xmþnþ1

k¼0

akzk, (20)

where ak ¼ f ðkÞð0Þ=k!; k ¼ 0; 1; 2; . . . ;mþ nþ 1. [m, n] Pade approximant of f is represented by a rational
function r that can be written in the following form:

rðzÞ ¼
b0 þ b1zþ � � � þ bmzm

1þ c1zþ � � � þ cnzn
�

pðzÞ

qðzÞ
. (21)

Generally, f is expanded in Taylor (or Laurent) series about the point x ¼ a (if a is not specified then the
expansion is about the point x ¼ 0), to order m+n+1, and then the Pade rational approximation is
computed. Pade technique is used to accelerate the convergence of a given series.
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The homotopy Pade technique [18] is a combination of the above-mentioned traditional Pade technique
with the homotopy analysis method. In order to calculate the [m, n] homotopy Pade approximant of f(t, q),
first the traditional [m, n] Pade technique is employed about the embedding parameter q:

fðt; qÞ ¼
Pm

k¼0Am;kðtÞq
kPn

k¼0Bm;kðtÞqk
, (22)

where the coefficients Am,k(t) and Bm,k(t) are determined by the first (m+n)th-order approximations of v(t). It
is noted that using homotopy Pade approximant, the number of order of approximation required to obtain an
accurate solution is reduced [27].

3.3. Application of the HAM

Free oscillation of a system without damping is a periodic motion and can be expressed by the following
base functions [28]:

fcos ðmtÞ; m ¼ 1; 2; 3; . . .g. (23)

In order to satisfy the initial conditions, the initial guess of v(t) for zero-order deformation equation is
chosen as follows:

v0ðtÞ ¼ a cos t. (24)

To construct the homotopy function, the auxiliary linear operator for vibration of a conservative system is
selected as [13]

L½vðt; qÞ� ¼ o2
0

q2vðt; qÞ
qt2

þ vðt; qÞ
� �

. (25)

The auxiliary linear operator L is chosen in such a way that all solutions of the corresponding high-order
deformation equations exist and can be expressed by the general form of the base function. From Eq. (5), the
nonlinear operator is written as

N½vðt; qÞ;o� ¼ o2 ð1þ 3�zðvðt; qÞÞ2Þ
d2vðt; qÞ

dt2
þ 6�zvðt; qÞ

dvðt; qÞ
dt

� �2
" #

þ o2
evðt; qÞ þ �o2

eðvðt; qÞÞ
3. (26)

The solution must comply with the general form of the base functions. Therefore, the auxiliary function
(H(t)) must be chosen as follows:

HðtÞ ¼ 1. (27)

Due to odd nonlinearity of considered conservative system, it is found that Rm can be expressed by

Rmðt;om�1Þ ¼
Xm

n¼0

dnðom�1Þ cos ðð2nþ 1ÞtÞ. (28)

According to the property of the linear operator, if the term cos(t) exist in Rm, the secular term t sin(t) will
appear in the final solution. Therefore, the coefficient of cos(t) in Rm should be equal to zero:

d0ðom�1Þ ¼ 0. (29)

Solving Eq. (29), om�1 is obtained. For the first-order approximation of HAM, R1 is as follows:

R1 ¼ �o2
0a�

3
4
o2

0a3�zþ o2
eaþ 3

4
o2

ea3�
� �

cosðtÞ þ 1
4
o2

ea3�� 9
4
o2

0a3�z
� �

cosð3tÞ. (30)

Thus, o0 can be written as

o0 ¼ oe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3a2�

4þ 3a2�z

s
. (31)
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Solving Eq. (15) for m ¼ 1, v1 is obtained as

v1 ¼
_�a3ð9zþ 6�za2 � 1Þ

8ð4þ 3�a2Þ
ðcos ð3tÞ � cos ðtÞÞ. (32)

Consequently, from the coefficient of cos(t) in R2, o1 is obtained as follows:

o1 ¼
0:75a4�2_oeð1� 10zþ 6a2�z2 � 6a2�zþ 9z2Þ

ð16þ 12a2�þ 12a2z�þ 9a4z�2Þ3=2
. (33)

The higher-order approximations for frequency and deflection can be similarly derived. Solving Eq. (15) for
m ¼ 2 yields the following result for v2:

v2 ¼
_�a3ð9zþ 6�za2 � 1Þ

64ð4þ 3�za2Þð4þ 3�a2Þ
2
ða1 cos ðtÞ þ a2 cos ð3tÞ þ a3 cos ð5tÞÞ, (34)

where

a1 ¼ � 96�a2 � 128_� 96z�a2 � 128� 92_�a2 � 72z�2a4

� 108_�3a6z2 � 174_�2a4z2 � 186_�2a4z� 292_�a2z, (35)

a2 ¼ 128_þ 96_�a2 þ 192_�a2zþ 96�a2 þ 96z�a2 þ 72z�2a4

þ 128þ 54_�3a6z2 þ 99_�2a4z2 þ 117_�2a4z, (36)

a3 ¼ �4_�a2 þ 100_z�a2 þ 69_z�2a4 þ 75_z2�2a4 þ 54_z2�3a6. (37)

From the coefficient of cos(t) in R3, o2 is obtained as follows:

o2 ¼
b1b2

b3
, (38)

where b1, b2 and b3 are given in Appendix A. The [1,1] homotopy Pade approximation of o and v(t) are written
in the following form:

o½1;1�pade ¼
o1o0 þ o2

1 � o2o0

o1 � o2
, (39)

v½1;1�pade ¼
v1v0 þ v21 � v2v0

v1 � v2
. (40)

Also [m, n] homotopy Pade approximation are determined by the first (m+n)th-order approximations of
o and v(t).

4. Results and discussions

In order to demonstrate and verify the accuracy and effectiveness of the HAM, the procedures explained in
the previous section are applied to obtain some sets of results, which are presented here. There are many
parameters, which can be varied in the governing equation. Table 1 gives the comparison of obtained results
with those published in the literature for different m, a, e, K1 and K2.

It can be observed from Table 1 that there is an excellent agreement between the results obtained from the
homotopy Pade technique and those reported in the literature. The maximum error between [1,1] homotopy
Pade approximant and numerical results (Runge– Kutta method) is 0.02 percent. In this case study, HAM
provides extremely accurate results for a wide range of system parameters. Also, the vibration frequency
converges very quickly to the exact solution with only [1,1] homotopy Pade approximant.

Fig. 2 illustrates the effect of auxiliary parameter _ on the frequency for different order approximation of
HAM solutions. It is shown that with the increase of the order of approximation, the frequency is independent
of _ and remains fixed.
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Table 1

Comparison of frequency corresponding to various parameters of system

m a e K1 K2 [1,1] Homotopy Pade approximant Lai and Lim [25] Runge– Kutta [25]

1 0.5 0.5 50 5 2.220231 2.220231 2.220231

1 0.5 0.5 50 5 3.175555 3.175209 3.175501

1 2 0.5 5 5 1.903495 1.900724 1.903569

1 2 0.5 5 50 2.195226 2.194560 2.195284

3 5 1 8 16 1.615021 1.614287 1.615107

3 5 1 10 5 1.748859 1.745984 1.749115

5 10 2 12 16 1.545833 1.545682 1.545853

5 30 5 15 5 1.731378 1.731347 1.731382

10 200 5 5 250 0.707107 0.707107 0.707107

10 100 10 5 25 0.707106 0.707106 0.707106

1 0.5 �0.5 50 5 2.038209 2.038209 2.038209

2 2 �0.1 10 10 1.446365 1.445356 1.446389

3 4 �0.02 30 10 1.318379 1.318255 1.318370

4 10 �0.008 6 3 0.517222 0.514250 0.517327

10 5 �0.01 8 16 0.705406 0.705312 0.705412

Fig. 2. The effect of auxiliary parameter _ on the frequency (m ¼ 10, a ¼ 5, e ¼ �0.01, K1 ¼ 8 and K2 ¼ 16).
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It can be noted that for _ ¼ �1.408, which is the middle point of the convergence interval, the second-order
approximation gives the frequency with the highest accuracy, while the higher order of approximation (up to
the second-order of approximation) does not improve the accuracy of the results. This indicates that the
auxiliary parameter plays an important role in the homotopy analysis method.

Fig. 3 presents variation of frequency (o) versus amplitude associated with the influence of e ¼ (b/K2)
corresponding to [1,1] homotopy Pade approximant for m ¼ 3, a ¼ 5, K1 ¼ 10 and K2 ¼ 5.

It can be observed that by increasing the vibration amplitude a, the frequency tends to a constant value
independent of e variation. For the limit in Eq. (39) as the amplitude of vibration tends to infinity, the limiting
case of [1,1] homotopy Pade approximant is as follows:

lim
a!1

o½1;1� pade ¼
oeffiffiffi

z
p . (41)
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Fig. 3. The results of [1,1] homotopy Pade approximant for natural frequency versus amplitude a associated with the influence of e.

Fig. 4. Deflection of nonlinear spring v(t).

S.H. Hoseini et al. / Journal of Sound and Vibration 316 (2008) 263–273270
For the limit as the amplitude of vibration tends to infinity, [1,1] homotopy Pade approximant gives
identical result to those obtained by Lai and Lim [25].

Figs. 4–6 show the deflection of nonlinear spring v(t), deflection of linear spring y1(t) and displacement of
mass y2(t), respectively, for m ¼ 1, a ¼ 2, e ¼ 0.5, K1 ¼ 5 and K2 ¼ 50.

The accuracy of the [4,4] homotopy Pade approximant is better than the corresponding result of [1,1].
Moreover, the results have an excellent agreement with the numerical solution using Runge– Kutta method.

The case study of this paper shows that the HAM and homotopy Pade technique can be potentiality used
for the analysis of strongly nonlinear vibration problems with high accuracy. As a significant conclusion, the
obtained results show that the accuracy of the present HAM solution is better than other analytical techniques
in the considered vibration problem with large oscillation amplitudes. The traditional analytical techniques
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Fig. 5. Deflection of linear spring y1(t).

Fig. 6. Displacement of mass y2(t).
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(e.g. perturbation method) loose their reliability at higher amplitudes of vibrations [1]. Also, according to the
results, the precision and convergence rate of the solution increases using homotopy Pade approximant.
5. Conclusion

The homotopy analysis method and homotopy Pade technique have been used to obtain an analytical
solution for the nonlinear free vibration of a conservative oscillator with inertia and static type cubic
nonlinearities. Besides their irreplaceable theoretical value, analytical solutions can also serve as benchmark to
check the results of numerical calculations and study various computational methods. A comprehensive
parametric study of the dominant parameters (coefficient of nonlinear spring force, linear portion (K2) of the
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nonlinear spring constant, linear spring constant (K1), deflection of nonlinear spring and mass) was carried
out. This study shows that the results of HAM and homotopy Pade technique are valid on a wide range of
considered system parameters. Moreover, HAM is suitable not only for weak nonlinear problems, but also for
strongly nonlinear problems. The most significant features of this method are its excellent accuracy for the
whole range of oscillation amplitude values. Also, it can be used to solve other conservative truly nonlinear
oscillators with complex nonlinearities.

Appendix A

b1 ¼ 0:09375oe_a4�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 12a2�þ 12a2z�þ 9a4z�2

p
,

b2 ¼ 512� 1296�4z2a8 � 10 368�za2 � 6912�2za4 þ 1296�4z3a8 þ 7488�3z2a4 � 864�2z2a4

� 594_�3z3a6 � 9472_�za2 � 14 526_�3z2a6 � 2816_�z2a2 � 17 946_�2z2a4 þ 15 540_�2z3a4

� 1062_�3za6 þ 2592h�5z4a10 þ 11232_�4z4a8 � 2592_�5z3a10 þ 11 520_�z3a2 þ 7749_�2z4a4

þ 16 182_�3z4a6 � 7776_�4z3a8 � 5120zþ 512_þ 768�a2 þ 288�2a4 � 5628_�2za4 � 3456_�4z2a8

þ 4608z2 � 3888�3z2a6 þ 6144�z2a2 þ 5400�3z3a6 þ 285_�2a4 þ 768_�a2 þ 3456�z2a2 � 1512�3za6

þ 4608_z2 � 5120_z,

b3 ¼ 6912a6z3�3 þ 11 664a10z�5 þ 2187a14z3�7 þ 11 664a12z3�6 þ 466 656a10z2�5 þ 82 944a6z2�3 þ 20 736a8z3�4,

� 16 384þ 124 416a6z�3 þ 23 328a10z3�5 þ 62 208a2z�4 þ 36 864a2z�þ 5184a8�4 þ 27 648a4z�2 þ 110 592a4z�2

� 8748a12z2�6 þ 27 648a4z2�2 þ 93 312a8z2�4 þ 49 152a2�þ 55 296a4�3.
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